CTS #TTSANS (RATHN

SIRIPOA (AETDIQBI)

(] AR NS 2T OIOO0, (P

(o J o)

WSS TR

APGNH

—

QEY

fofGere

BICEE

N/
0’0
N/
0’0

@I@T“Gﬁim@ﬁ@

fSfGBIE (Digital) *ITHT WY (T A(F© AT AOIHA
Wzﬁ?ﬁiﬁﬁ_ © BT ACH(1,0)|

FOMNH 499 (Y XM digita] AT, AUPY, BICE
dlgltal TFE A I, FRIAN], [ToraA 31*"11?6
|<1*5||<1\9 ﬁmSI‘T 8 WIATENT HA1 Y OIS [OIG6T
EGETCEKRIGHE

fOfGor 3RS
NCASNCF G-

MG ERRICIOR

RUEIEG

fofoitre 96

PIAPE0

RICNGEGIRRE]

AN(FTOTR

NICAE

P USRS

G-N=oraA=

- (IS0, FRe-6Id oM |

RGRRINICINGEE BRG]

RIGRIBRCHGHS csma'ﬁm?ma AF IF TN I
JF TPV NN T AP S B HBIeTo =7
VSR RIGREERENGEIGE

Amplltude
5V

i \ /\ / \

T IS0 PT/INO T o = U T /T TET P10
FE PV NN Fed

[NTsE ST 21 9 &

SRR S HI ABITS TT OIF (OGO
ERCNGKIGE
A1 0 1 0 1
(—|—5)V
(-5v) > -
28 25 25

[GIGroreT 2t ING-5
(R0))
WVYTTYs-0

CTE XTRTSANS (RACHAA

_ 2MGIR0A (RARIGFIE
(Pl ATTERP 3@%@@3 Cﬁ%

« fefore (51203-
» (NIfeT<s (5120

00
I

The AND Gate: EETN

The AND is the last of the remaining fundamental logic gates. You will learn its
behaviour using a Truth Table analysis and an animation.

Truth Table The table shows that the AND gate responds with a high at the output if
the signal applied to the input A and B are both high.

Animation. In order to see how it works, the gate has been connected to 2 switches and LED.
Continue to see the system in action...

IV

AND
Logic 0
Input A A B X
Output Logic 0

> X 0 0 0

Input B > }
> 0 1 0
_ 1 1 0 0
T 1 1 1

Logic O

%«Tx; w
w

The OR Gate: EEE

The OR gate is the second of three fundamental logic gates. You will learn its behaviour
using a Truth Table analysis and an animation.

Truth Table The table shows that the OR gate responds with a high at the output if the
signal applied to the input A or B is high.

Animation. In order to see how it works, the gate has been connected to 2 switches and LED.
Continue to see the system in action...

IV

OR

Logic 0 5 A B «

Input A \Y .
> 0 0 0

Input B X > }

> 0 1 1
I 1 0 1
T 1 1 1

Logic O

; I
iF —

The NOT Gate (inverter): -

The NOT gate is the first of the three fundamental logic gates. You will learn
its operation using Truth Table analysis and an animation.

A

Truth Table Is a chart that lists the input condition on the left and the gate’s _L
output response on the right. The table shows that the NOT gate responds at the 0 1
output with the inverse of the signal applied to the input. 1 0

Animation. In order to see how it works, the gate has been connected to a switch and LED.
Continue to see the system in action...

5
Vv

_ X ORF
Logic 1 » N
f Logic O

Input A Output

AND Gate

Two Input Transistor AND Gate

3-11-HINZ0DS!
sJojsisued] NdN

Switch-Il
AND Gate Type Truth Table’

--—————- --—————————————

—.—..—..—..—..—.—. —.—.—.—.—.—.—.—. —.—.—.—.—.

——— ———— T — — — —— — — —— — — —

— — — — — — T— T — — T— T— — — — — — — — —

— — — — — — T— T — — T— T— T— — — — — — — —

— —— — — — —— T — —— — — — — - ——— — — —

OR Gate

Two - Input Transistor OR Gate

3-11-HINZ0DS 1L
sJojsisueld] NdN

____________________ www.iamtechnical.com
_____________________ @Azhar Ahmed

NOT Gate

LED's : 1.83V, @20mA

+

NOT Gate Type ' Truth Table '

— e — — — — — — — — — — — -

1 .‘i
/ 1oonF
------------ | M

.ﬂl..
Transistor NOT Gate (%\

tey
|

i

i

Collector

NPN Transistor
15C02MH-TL-E

www.iamtechnical.com
@Azhar Ahmed

PROJECT LEAD THE WAY

Md. Shakawat Hossain
Instructor (Electrical)

Digital Electronics :-1(26831)
Chapter-3

PROJECT LEAD THE WAY

Universal Gate — NAND&NOR

Digital Electronics

Universal Gate — NAND

This presentation will demonstrate
* The basic function of the NAND gate.

« How a NAND gate can be used to replace an AND gate,
an OR gate, or an INVERTER gate.

* How a logic circuit implemented with AOI logic gates can
be re-implemented using only NAND gates.

« That using a single gate type, in this case NAND, will
reduce the number of integrated circuits (IC) required to

Implement a logic circuit.
AQI Logic NAND Logic

More ICs = More $$ Less ICs = Less $$

NAND Gate

Z

Y
0

1
0
1

NAND Gate as an Inverter Gate

x%ijo/— Z=X

Z

0|1
Equivalent to Inverter

1|0

X @ X = X (Before Bubble)

NAND Gate as an AND Gate

/XY B

X [—
Y
\ J \ J
| |
NAND Gate Inverter
XY |Z
0|00
0|10
— Equivalent to AND Gate
1(0(0
1111

NAND Gate as an OR Gate

e
x{ Y -
Y{ﬁ} Z=XY=X+Y=X+Y

\ J
\) Y
|
NAND Gate

Inverters

— Equivalent to OR Gate

Rk, |Oo|o|X
Rlo|r,|lol<
Rk, |[O|N

NAND Gate Equivalent to AOI Gates

AND OR INVERTER

Y

Process for NAND Implementation

1.

If starting from a logic expression, implement the design
with AQOI logic.

In the AOI implementation, identify and replace every
AND,OR, and INVERTER gate with its NAND
equivalent.

Redraw the circuit.

|dentify and eliminate any double inversions (i.e., back-
to-back inverters).

Redraw the final circuit.

Universal Gate — NOR

This presentation will demonstrate...
* The basic function of the NOR gate.

 How an NOR gate can be using to replace an AND gate,
an OR gate or an INVERTER gate.

* How a logic circuit implemented with AOI logic gates
could be re-implemented using only NOR gates

« That using a single gate type, in this case NOR, will
reduce the number of integrated circuits (IC) required to

Implement a logic circuit.
AQI Logic NOR Logic

B i i 4 10
More ICs = More $$ Less ICs = Less $$

NOR Gate

| >
| X

L=X+Y=

Z

Y
0
1

0

1

11

NOR Gate as an Inverter Gate

/)(+ X = X (Before Bubble)
) e 7=X

Z

0|1
Equivalent to Inverter

1|0

12

NOR Gate as an OR Gate

/X-I—Y
X
DO—@O—Z:X+Y:X+Y

\ J | }
| |

NOR Gate “Inverter”

<

— Equivalent to OR Gate

Rk, |Oo|o|X
Rlo|r,|lol<
Rk, |[O|N

13

NOR Gate as an AND Gate

X Y -
Z=X+Y=XY=XY
Y

NOR Gate

)

“Inverters”

— Equivalent to AND Gate

R | |O|[O|X
~lo|rk o<
R (O[O |O|N

14

NOR Gate Equivalent of AOI Gates

AND OR INVERTER

Process for NOR Implementation

1. If starting from a logic expression, implement the design
with AQOI logic.

2. In the AOI implementation, identify and replace every
AND,OR, and INVERTER gate with its NOR equivalent.

3. Redraw the circuit.

4. Identify and eliminate any double inversions. (i.e. back-
to-back inverters)

5. Redraw the final circuit.

16

THANK YOU

wellcome

Md. Shakawat Hossain
Instructor (Electrical)
Digital Electronics-1 (26831)
Chapter-6

COMBINATIONAL LOGIC

Combinational
circuit

ram of Combinational Circuit

Binary addition by hand

* You can add two binary numbers one column at a time starting from the
right, just like you add two decimal numbers.

» But remember it’s binary. For example, 1 + 1 = 10 and you have to carry!

The initial carry
in 1s implicitly 0

l

Carry in

1 0 1 1 Augend

+ 1 1 1 0 Addend
1 1 0 0 1 Sum

| 1

most significant bit least significant bit
(MSB) (LSB)

HALFADDER

Adding two bits

» We'll make a hardware adder based on our human addition algorithm.

» We start with a half adder, which adds two bits X and Y and produces a
two-bit result: a sum S (the right bit) and a carry out C (the left bit).

» Here are truth tables, equations, circuit and block symbol.

|
C = XY : .PDS X
S = XY + XY)
“XoY - |4

—_ = O O | <
—_ O = O || =<

—_ O O O
O = = O | W

FULL ADDER

Adding three bits

But what we really need to do i1s add
three bits: the augend and addend
bits, and the carry in from the right.

A full adder circuit takes three
inputs X, Y and C.,, and produces a
two-bit output consisting of a sum S
and a carry out C_..

o
1 1
1 11 0
1o (o
X Y I':in C’uut 5
0O 0 O 0 O
0 0 1 0 1
0 1 0 0 1
o 1 1 1 0
1T 0 0 0 1
1T 0 1 1 0
T 1 0 1 0
T 1 1 1 1

Full adder equations

» Using Boolean algebra, we can simplify S and C_ . as shown here.

out

S =Im(1,2,4,7)
X Y Cin Cﬂut S =K!chin + KrYCin! + KYscin? + KYcin
0 0 0|0 O =X'(Y'C,, + YC,') + X(Y'C, +YC,)

=XaY®C

0 1 111 0 "
5010y carmase
11 0[1 0 = X'YC,, + XY'C,, + XYC,)” + XYC,,
11 111 1 = (XY =+ XY")C;, + XY(C,," + C,.)

= (X @ Y)C,, + XY

Full adder circuit

» We write the equations this way to highlight the hierarchical nature of
adder circuits—you can build a full adder by combining two half adders!

)
]
=
>
&®
=
O
=
+
P-4
=<

Cin

Y X
— Cout Cin—
8
|

A four-bit adder

B3 A3 B2 A2 Bl Al BO AD
grasm s |. |. + + +| + |. y
: Y X Y X Y X Y X |i
P —Cout Cin“cout Cinf X Cowt Cin-“{Cout CiniEC
r g 5 s 5 :
IR R — . —— S — pE—————— — ;
co S3 52 S1 80
» Similarly, we can cascade four full adders to build a |
four-bit adder. s co
— The inputs are two four-bit numbers (A3A2ZATAQ and m E?
B3B2B1B0) and a carry in Cl. B0 &3
— The two outputs are a four-bit sum 53525150 and the Y Ef
carry out CO. M
If you designed this adder without taking advantage of —A0 ¢

the hierarchical structure, you'd end up with a 512-row
truth table with five outputs!

An example of 4-bit addition

» Let’s put our initial example into this circuit, with A=1011 and B=1110.

T 1 1 0 1 1 0 1
B|3 A|3 E-|2 A|2 E|1 A|1 a|u A|u
C:ul JI‘f:::in = Cl:I:t }éin o7 Cn:Ilt :Ein =l C'L J{Cin —Cl 0
S 1 g 1 S 0 S
sls slz s|1 slu
1 0 0 1
1. Fill in all the inputs, including CI=0
2. The circuit produces C1 and 50 (1 +0+0=01)
3. UseCltofindC2andS1(1+1+0=10)
4, Use C2tocomputeC3andS2 (0+1+1=10)
5. Use C3 tocomputeCOandS3 (1+1+1=11)

Binary Adder/Subtractors

« The subtraction A-B can be performed by
taking the 2's complement of B and adding to
A.

* The 2's complement of B can be obtained by
complementing B and adding one to the result.

A-B =A +2C(B)
= A+1C(B) + 1
—A+B’+1

4-pit Binary Adder/Subtractor

"""l-—-l""'
¥ [:: W'
r FA W—— FA [—IC

-XOR gates act as programmable inverters

4-bit Binary Adder/Subtractor (cont.)

* When S=0, the circuit performs A + B. The

carry inis 0, and the XOR gates simply pass B
untouched.

 When S=1, the carry into the least significant
bit (LSB) Is 1, and B is complemented (1°’s
complement) prior to the addition; hence, the
circuit adds to A the 1’s complement of B plus
1 (from the carry into the LSB).

4-bit Binary Adder/Subtractor (cont.)

S5=0

4-bit Binary Adder/Subtractor (cont.)

S=1

S=1 selects subtraction

THANK YOU

Flip-Fl

lecture note
Md.Shakawat Hos
Instructor (Elect

Digital Electronics-1 (26831)
Chapter-10

Objectives of Lecture

The objectives of this lecture are:

* to discuss the difference between combinational and sequential
logic as well as the difference between asynchronous and
synchronous circuits and to show why the operation of synchronous
circuits is more predictable, given propagation delays.

* to explain the operation of the common latches and flip-flops
— SR or set—reset latch, which may also be called a SR flip-flop
— D or data flip-flip
— T or toggle flip-flop
— JK flip-flop
* to describe clocking and the differences between positive edge
and negative edge triggering and discuss the type of control

inputs — active high and active low; asynchronous, jam or
direct.

Combinational Logic

*The outputs depend only on the state of the inputs all of the
time. Any change in the state of one of the inputs will ripple
through the circuit immediately.

o Examples of combinational logic are NAND and NOR gates,
Inverters, and Buffers. These four logic gates form the basis
of almost all combinational logic circuits as well as flip flops.

*Circuits that change the state of the output in this manner are
also known as asynchronous circuits.

o However, not all asynchronous circuits are combinational
logic circuits.

Sequential Logic

* Has memory; the circuit stores the result of
the previous set of inputs. The current output
depends on inputs in the past as well as
present inputs.

o The basic element in sequential logic is the
bistable latch or flip-flop, which acts as a memory
element for one bit of data.

Clocked Circuits

* Most flip-flops are clocked so that the output change state
based upon the state of the inputs at precisely
determined times.

o Usage varies — in this course, ‘flip-flops” will be used for

clocked circuits and ‘latches’ for circuits that are
asynchronous.

* A common clock used in many flip-flips in one circuit ensures
that all parts of a digital system change state at the same time.
This is called a synchronous system

Bistable Circuit

» At the heart of a bistable circuit is a pair of
iInverters connected in a loop — with
feedback, in other words. It has two stable

States. [o [o

0_@1 1_@0

— Without some control, there isn’'t a way to force
the bistable circuit into one or the other state.

Bistable Circuits

* The bistable circuit is used as a ‘bus keeper’ to
hold a node at a definite 1 or O. It is also the heart
of a ‘static random access memory’ (SRAM) cell.

o Similar operation occurs for any ring composed of an
even number of invertors.

o What would happen if 3 inverters (or larger odd number)
are connected in series?
[This type of circuit is called a ring oscillator.
1 Check this out in the laboratory or in PSpice!

Core of a Flip-Flop:
The set—reset or SR Latch

* Acts as a simple memory with two stable states at
the two output whenS=R=0

e oot
0 ‘; :1 _ DQ—QEZO
R

— Q1 and Q2 are the outputs of the S-R latch.

— When Q1 is known as Q and Q2 is also called Q or Q
(spoken as Q bar), meaning that its value is not Q or the
opposite of Q.

NI

* The latch

¥

X

S-R Latch

Acts as a simple memory with two stable states when S=R =0:

_lel

-holds (stores) when S=R =0
-isset (to 1) by bringing S=1withR=0
-isreset (to 0) or cleared by bringing R=1with S=0

* The condition S =R =1 must be avoided because it leads to an
Indeterminate condition, where the output can not be predicted at any one
point in time. This can cause a race condition to occur when the inputs
changeto S=R =0.

SR Latch with Enable

Q

enable
signal C —

2 R
*The S and R inputs only effect the output states when the

enable input C is high.
— This controls when the latch responds to its inputs.

*The latch holds (stores) its value while the enable input is
low — latches it!

* Any changes in the inputs during the time when enable is high
will affect the output immediately: the circuit is said to be
transparent.

* This circuit still has a major problem: the stored value is
indeterminate if S = R = 1 when the clock goes low

Logic Table

SR Latch SR Latch with Enable

0 0) Last Q Last Q
0 1 0 0 1 1 0
1 0 1 1 0 1 1
1 1 1 1 1
X X 0) Last Q

Timing Diagram

™1 v
DST 1 o . ,
7404 2

7400

Timing Diagram

No Initial Condition Indeterminate Condition, Q = Q’
Propagation Delay Time Followed by a Race Condition

Task

» The two NAND gates form a SR latch.

— SR latches can be made using OR, NOR, or
AND gates. Can you design one and work
out the logic table for its operation?

« Depending on the design and which output is
called Q, the race condition occurs whenS=R =0
and the last Q state occurs when S =R = 1.

— Can you predict the logic table before you have
constructed the circuit and simulated/measured output
for the four sets of input states?

74279

USA

1R
151 ’
d1s2 1a
2R
%2;5, 2q}-L

* Note that there is dual SR bar latch in PSpice (2 in 1 part). 74279

— It may appear that the undefined operation has been designed out of its
operation when you use this part in a simulation. However, the datasheet

indicates that the race condition may show up.

Connection Diagram

Vcc¢ 45 4R 4Q 352 351 3R 3Q

| 16 15 14 |13 |12 11 |10 9
—

1 2 3 4 5 6 7 8

iR 181 1S2 1Q 2R 2S 2Q GND

Function Table

Inputs Output
S (Note 1) R Q
L L H (Note 2)
L H H
H L L
H H Qp
H = HIGH Level
L = LOW Level

Qg = The Level of Q before the indicated input conditions were established.

Note 1: For latches with double S inputs:
H = both S inputs HIGH
L = one or both S inputs LOW

Note 2: This output level is pseudo stable; that is, it may not persist when
the S and R inputs return to their inactive (HIGH) level.

D Flip-Flop

Y
I

* The problem with S = R = 1 can be avoided using a common
iInput D as shown above so that S =R.

« The output of the latch now:
— follows the D input while C = 1 (transparent)

— holds its value while C =0 (Q = last Q when C went low) no matter
what happens at the input

« This circuit is often called a transparent latch. It can be bought as
an integrated circuit, usually with several latches in a package.

— The input C may be called control, clock, gate, or enable.

D

C

Q

D

Cl

Q

Timing Diagrams

output follows input

«

output follows input

QO

«

QO

Transparent Latches

* Transparent latches have important
applications in digital electronics.

— However, the stability of the output can be an
ISsue in noisy environments.

— It is more convenient if the behaviour depends on
the inputs only at a particular time, which led to
the invention of edge-triggered flip-flops.

* Transparent latches are sometimes called ‘level-
sensitive’ flip-flops to distinguish them from edge-
sensitive devices. Yet another name is ‘half flip-flop’.

Edge-Triggered Flip-Flops

These circuits respond to their inputs on either the rising or falling
edge of the clock — a precise point in time rather than an interval.

Positive edge triggered Negative edge triggered
rising edge of clock falling edge of clock

D Q D Q
additional of a circle
> means that there is a>
negative edge triggering

Q Q

wedge shows positive
edge triggering

Older flip-flops may be ‘pulse-triggered’, which require a clock pulse that
goes from 0—1—0 or a ‘master—slave’ types but these are now obsolete.

Excitation Tables

Logic tables show the state of the output(s) of a logic circuit as a function of its
Inputs at the same time.

Since, clocked digital systems have memory, their behaviour depends on inputs
In the past as well as the present values of the inputs.

Thus, flip-flops cannot be described by simple truth tables. Instead, we use
excitation or transition tables. These show:

* output before the clock transition — often labelled Qn

* inputs at the clock transition — such as S and R

« occasionally the type of clock transition — positive/negative edge-triggered
 the resulting output after the clock transition — often labelled Qn+1

It is important to remember that Qn and Qn+1 describe the same signal but at
different times. The notation can vary, e.g. Qo and Q instead.

D Flip-Flop

D C Qn OQn+1 description B D Q B
0 — 0 0 Clear
0 — 1 0 (reset) —> .
1 0 1

B Set Q |
1 — 1 1

Input output output
at before after Q.. =D
clock clock clock

A D flip-flop simply stores the value on its D input at the clock transition.

The previous value stored, Qn, has no effect, unlike other flip-flops.
It therefore acts as a simple memory or ‘latch’.

The most widely used flip-flops: simple to build and design with.

A register comprises several D flip-flops, one for each bit to be stored.

Timing Diagram: Edge-Triggered FF

D Q

_> .
D Q

Q

The input D can change at any time because it comes from other parts of
the system — it is not necessarily synchronized to the clock (it may be from
a switch on the front panel, for instance). However, the flip-flop only
changes its output when the clock pulse rises.

Toggle (T) Flip-Flop

T Qn Qn+1 description — L
0 0 0
hold —> .
0 1 1 Q
- 0 1 toggl [
ggle
1 1 0

Qn+1:Tz Qn:TOQ_n-I_ -I__OQn

Note that the output depends on the previous value stored, Qn.

This type of flip-flop is rarely bought as a ‘dedicated’ device — you
can easily make a T from a D flip-flop.

Aside: it is not possible to put a specific value into a T flip-flop — it can only toggle or hold.

What does this circuit do?

Clock —»Clk

=]

L

L

Clk

=]

L

Assume that the initial state of Q,, Q,, Q,, and Qg are all logical zeros.
1. Determine how Q, changes as the clock pulse goes from 0 -1 -0 1.
2. After how many clock pulses will Q, change state from ‘0’ to ‘1'?
3. After how many clock pulses will Q, change state from ‘0" to 1'?
4. After how many clock pulses will Q; change state from ‘0’ to ‘1'?

Clk

=]

S-R Latch

S R C QOn Qn+1| description
0 0 o 0 0 hold
0 0 1 1
0 1 _ 0 0 clear (reset)
0 1 o 1 0
1 0 L 0 1 set
1 0 T 1 1
1 I 0 ? | indeterminate
1 1 — 1 ? — avoid

iInputs output output

at before after

clock transition clock clock

JK Flip-Flop

J K On Qn+1 description
—J Q |
0 0 0 0 hold
0 0 1 1 -q>
0 1 0 0 clear (reset) —_
0 1 1 0 K QF
1 0 0 1 set
1 0 1 ! Qn+1:‘J<>Qn+K<>Qn
1 1 0 1 toggle
1 1 1 0

The excitation table for a JK flip-flop is similar to SR flip-flop but doesn’t have the
problem of S = R = 1. It can perform all the operations of the simpler types of flip-flop.
However, the design of the circuit internal to the flip-flop makes it more expensive to
manufacture than a number of other flip-flops so JK flip-flops are now rarely used.

Timing Diagram: JK Flip-Flop

C
J
K
Q
hold set hold clear toggle set
(no effect)

Suggestion: Determine the Q output for a negative edge triggered JK flip-flop
with the inputs shown above, assuming that Q starts at logic O.

Same Operation as Circuit on Slide 24

Qo Qy Qs Qs
Voo :J ;
J] J Q J Q J Q
Clock 3 E:} - G:} 3 G} > Gf}
K Q K Q K [#] K [#]
— — — —

Task: Prove this to yourself.

Control Pins

Flip-flops and more complicated circuits often have inputs, such as clear,
preset, enable, and load. The state of the control pins has priority of the
D and Clock inputs when determining the state of the output.

| PRE

—1

ol

TCLR

* Clear (CLR) resets the flip-flop output to 0 — the most common control input
* Preset (PRE) sets the flip-flop output to 1

More complicated circuits such as counters may have additional control inputs for
up/down, count/hold, load, etc. Microprocessors usually have a reset pin.

Active Low Controls

Control inputs are often active low, shown by a bar over the label or a
circle for negation (or both as in the component below).

| PRE

—

ol
Active low inputs should be: TCLR

« kept high for normal operation
« changed to low to preset or clear the device.

The reason for making these active low is historical.

Check the data sheet to be sure!

Asynchronous Control

Another feature of control inputs is that they are often
asynchronous. This means that they take effect
Immediately and do not wait for a clock transition.

Compare

» D takes effect only at a clock transition (positive
edge)

 clear and preset act immediately to ‘overrule’ D

Asynchronous inputs are sometimes called direct or jam inputs.

Always check the data sheet because some control inputs are
synchronous!

Propagation Delay

We have seen that most modern logic devices are triggered on either the
rising or falling edge of the clock. The output does not respond instantly,
but only after a time called the propagation delay, tpq.

Here is an example for a D flip-flop that was measured in a UoG lab class.

Tek JL Trig'd MPos:-10.00ns CURSOR
-
Type
74HC74 _
Time
flip-flop
at3V : Source
propagation CH1

—p- delay, tod
(about 16 ns)

M 10.0ns
25-0ct-06 10:52

Limitations on Circuit: t

The propagation delay is important for several reasons:

* It limits the speed at which circuits can be clocked (20 or 30 MHz for the
‘HC’ family of components, used in the laboratory)

» Signals that pass through different numbers of components receive
different delays, as in a ripple counter. Time must be allowed for all
outputs to settle down before the system attempts to change state again.

* The delay helps to keep digital circuits with feedback stable (this
applies to virtually all practical circuits).

- Each logic gate responds to its at the clock transition.

- Because of t_,, the outputs change after the propagation delay.

pd?
- This affects the inputs that are connected to outputs.

- However, these gates are no longer acting on their inputs until the next
clock transition arrives.

Would this circuit work?

What would happen if t 4 is longer than the period of the clock?
What would happen if t 4 is about equal to the clock’s period?

=]
0
=
=
=
=
=

Clock —>Clk

o a0 kWD

Lecture Review Questions

What Is the fundamental difference between combinational and
sequential logic?

What inputs should you put on a SR flip-flop to set it (to 1)?

Why must S = R = 1 be avoided?

Why do sequential logic circuits need a clock?

What is meant by the term edge-triggered flip-flop?

Describe the operation of a type D flip-flop. For what are they used?

Describe the operation of a JK flip-flop with J = K = 1.

Why do some flip-flops have control inputs? In what ways do they differ
from the normal inputs, such as J and K?

What is the propagation delay? Why is it important?

THANK YOU

